skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Benquan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Andrew Yeh-Ching Nee, editor-ion-chief (Ed.)
    Wire arc additive manufacturing (WAAM) has received increasing use in 3D printing because of its high deposition rates suitable for components with large and complex geometries. However, the lower forming accuracy of WAAM than other metal additive manufacturing methods has imposed limitations on manufacturing components with high precision. To resolve this issue, we herein implemented the hybrid manufacturing (HM) technique, which integrated WAAM and subtractive manufacturing (via a milling process), to attain high forming accuracy while taking advantage of both WAAM and the milling process. We describe in this paper the design of a robot-based HM platform in which the WAAM and CNC milling are integrated using two robotic arms: one for WAAM and the other for milling immediately following WAAM. The HM was demonstrated with a thin-walled aluminum 5356 component, which was inspected by X-ray micro-computed tomography (μCT) for porosity visualization. The temperature and cutting forces in the component under milling were acquired for analysis. The surface roughness of the aluminum component was measured to assess the surface quality. In addition, tensile specimens were cut from the components using wire electrical discharge machining (WEDM) for mechanical testing. Both machining quality and mechanical properties were found satisfactory; thus the robot-based HM platform was shown to be suitable for manufacturing high-quality aluminum parts. 
    more » « less
  2. S. Kapoor, editor-in-chief (Ed.)
    In this paper, a novel hybrid wire arc additive manufacturing (WAAM) and ultrasonic nanocrystal surface modification (UNSM) on porosity manipulation and surface properties of aluminum 5356 alloys was studied. The goal is to improve the quality of the WAAM-built part by eliminating bigger pores and reducing its size, reducing surface roughness, and increasing surface hardness. The as-built WAAM and WAAM-UNSM-treated samples were quantitatively studied for porosity using an X-ray micro-computed tomography (μ-CT). The surface roughness was measured on the surface profile of the same samples before and after UNSM treatment. Followed by the Vickers micro-hardness tests to evaluate the hardness modified by the influence of the UNSM treatment. It was found that the bigger pores in the as-built WAAM samples were eliminated and the medium-sized pores were shrunk to almost half the size after the UNSM treatment. Further, the UNSM treatment showed a significant improvement in both surface roughness and hardness on the WAAM Al5356 samples. This experimental work demonstrates the critical advantages of hybrid WAAM-UNSM in improving the qualities of the WAAM processed parts. 
    more » « less